Reaching Consensus with Uncertainty on a Network
نویسندگان
چکیده
As modern communication networks become increasingly advanced, so does the ability and necessity to communicate to make more informed decisions. However, communication alone is not sufficient; the method by which information is incorporated and used to make the decision is of critical importance. This thesis develops a novel distributed agreement protocol that allows multiple agents to agree upon a parameter vector particularly when each agent has a unique measure of possibly non-Gaussian uncertainty in its estimate. The proposed hyperparameter consensus algorithm builds upon foundations in both the consensus and data fusion communities by applying Bayesian probability theory to the agreement problem. Unique to this approach is the ability to converge to the centralized Bayesian parameter estimate of non-Gaussian distributed variables over arbitrary, strongly connected networks and without the burden of the often prohibitively complex filters used in traditional data fusion solutions. Convergence properties are demonstrated for local estimates described by a number of common probability distributions and over a range of networks. The benefit of the proposed method in distributed estimation is shown through its application to a multi-agent reinforcement learning problem. Additionally, this thesis describes the hardware implementation and testing of a distributed coordinated search, acquisition and track algorithm, which is shown to capably handle the conflicting goals of searching and tracking. However, it is sensitive to the estimated target noise characteristics and assumes consistent search maps across the fleet. Two improvements are presented to correct these issues: an adaptive tracking algorithm which improves the confidence of target re-acquisition in periodic tracking scenarios, and a method to combine disjoint probabilistic search maps using the hyperparameter consensus algorithm to obtain the proper centralized search map. Thesis Supervisor: Jonathan P. How Title: Professor
منابع مشابه
Adaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کاملDesign of a reliable supply chain network with responsiveness considerations under uncertainty: case study of an Iranian tire manufacturer
This paper proposes a bi-objective reliable supply chain network design that immunizes the network against different sources of uncertainties. In this regard, scenario based stochastic programming method is applied to model different disruption scenarios affecting accurate performance of network stages. Also, reliable and unreliable facilities are suggested for lessening vulnerability of networ...
متن کاملRelative Efficiency Measurement of Banks Using Network DEA Model in Uncertainty Situation
Traditional DEA method considered decision making units (DMUs) as a black box, regardless of their internal structure and appraisal performance with respect to the final inputs and outputs of the units. However, in many real systems we have internal structure. For this reason, network DEA models have been developed. Parallel network DEA models are a special variation which inputs of unit alloca...
متن کاملHow to Support Consensus Reaching Using Action Rules: a Novel Approach
We consider a consensus reaching process in a group of individuals meant as an attempt to make preferences of the individuals more and more similar, that is, getting closer and closer to consensus. We assume a general form of intuitionistic fuzzy preferences and a soft definition of consensus that is basically meant as an agreement of a considerable (e.g., most, almost all) majority of individu...
متن کاملImproved Binary Particle Swarm Optimization Based TNEP Considering Network Losses, Voltage Level, and Uncertainty in Demand
Transmission network expansion planning (TNEP) is an important component of power system planning. Itdetermines the characteristics and performance of the future electric power network and influences the powersystem operation directly. Different methods have been proposed for the solution of the static transmissionnetwork expansion planning (STNEP) problem till now. But in all of them, STNEP pr...
متن کاملA new virtual leader-following consensus protocol to internal and string stability analysis of longitudinal platoon of vehicles with generic network topology under communication and parasitic delays
In this paper, a new virtual leader following consensus protocol is introduced to perform the internal and string stability analysis of longitudinal platoon of vehicles under generic network topology. In all previous studies on multi-agent systems with generic network topology, the control parameters are strictly dependent on eigenvalues of network matrices (adjacency or Laplacian). Since some ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009